jueves, 4 de noviembre de 2010

elipse

La elipse posee un «eje mayor», trazo AB (que equivale a  \,  {2a} ), y un «eje menor», trazo CD (que equivale a  \,  {2b} ); la mitad de cada uno de esos ejes recibe el nombre de «semieje», de tal manera que se los denomina «semieje mayor» y «semieje menor», respectivamente.
Sobre el «eje mayor» existen dos puntos  \,  {F_1} y  \,  {F_2} que se llaman «focos».
El punto  \,  {Q} es uno que pertenezca a la «elipse».

[editar] Puntos de una elipse

Si F1 y F2 son dos puntos del plano y d es una constante mayor que la distancia F1 F2, un punto Q pertenecerá a la elipse, si:
F_1 Q + F_2 Q = d = 2a \,
donde a\; es el semieje mayor de la elipse.

[editar] Ejes de una elipse

Eje mayor (2 a) es la distancia mayor entre dos puntos adversos. En la figura, longitud del segmento AB.
La medida a es la mitad del eje mayor, o sea es el semieje mayor. La distancia del centro de la elipse al punto A o al punto B.
El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor.
Obsérvese que d(AF2) + d (AF1) = d(AF2) + d (BF2)= AB
La medida b es la mitad del eje menor, o sea es el semieje menor, la distancia del centro al punto C o al punto D.

[editar] Excentricidad de una elipse

La excentricidad de una elipse es la razón entre su semidistancia focal (segmento que va del centro de la elipse a uno de sus focos), denominada por la letra 'c', y su semieje mayor. Su valor se encuentra entre cero y uno.

No hay comentarios:

Publicar un comentario